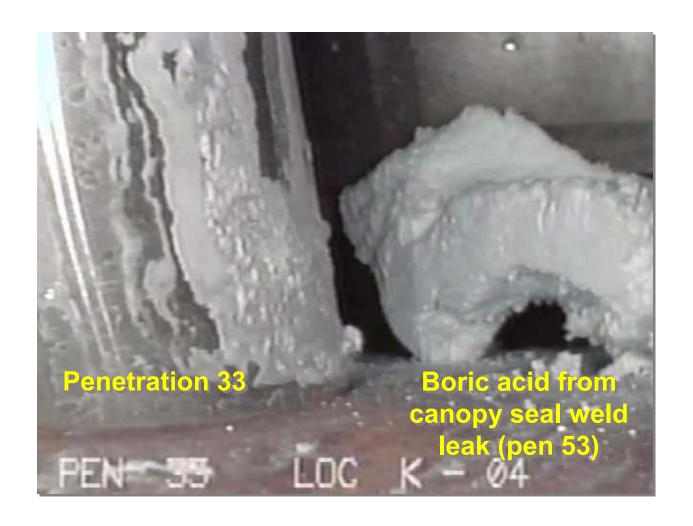
W1 Circumferential Cracking of Reactor Vessel Head Penetration Nozzles

RIC 2002

David A. Christian
Senior Vice President & Chief Nuclear Officer
Dominion Energy
March 6, 2002

Dominion Response to Bulletin

- Would perform 100% effective visual inspection for NAPS 1 and SPS 1 during fall RFO and 100% NDE on NAPS 1 (if equipment reliable)
- Evaluate results from NAPS 1 and SPS 1 to assess inspection timeframe for NAPS 2 and SPS 2
- Based on inspection results, decision was made to inspect all units by year end in accordance with bulletin recommendation
- Supplemental response to bulletin provided results of plant specific analysis for SPS and NAPS which qualified visual examination


- 100% qualified visual performed
 - Heavy boric acid deposits on 50% of head
 (active canopy seal weld leak found at shutdown)
 - Crawler unreliability in part due to debris on head
 - 34 of 65 penetrations with relevant boric acid deposits

- NDE campaign
 - Eddy Current (EC) plan based on visual results
 - Delivery system unreliable therefore could not obtain NDE data on 100% of penetrations
 - Access was limited due to "unique" centering rings
 - Ultrasonic Testing (UT) performed based on EC results
 - 6 of 8 tubes with EC recordable indications inspected with UT very shallow axial indications, other 2 were conservatively sized based on 2:1 aspect ratio
 - Result showed EC conservatively sized indications
 - Tubes dispositioned by flaw evaluation

- NDE campaign (continued)
 - Liquid Penetrant (LP) utilized to disposition J-groove weld recordable indications
 - 3 of 5 penetrations examined with manual LP
 - 2 of 5 penetrations accepted by review of EC data compared to LP results
 - NDE Level III determined indications in clad material

• Penetration 50

- Penetration not in boric acid field from canopy seal weld leak
- EC of tube showed non-recordable indications in tube (98% coverage)
- EC showed 4.3 mm indication in the clad (not recordable)
- UT of tube ID no recordable indications but limited to 97 degrees
- LP of weld indications in clad and crater crack in the weld (crater crack was ground out)
- Removed thermal sleeve to obtain full access full access UT revealed no recordable indications including a circumferential UT scan

Results

- No through wall indications
- Shallow indications do exist on tube ID which need to be monitored for growth rate (unknown if PWSCC)
- Visual inspection complicated by large amount of boric acid on the reactor vessel head from other sources
- NDE inspection complicated due to interferences (centering ring and anti-ejection ring)
- Inspections complicated by delivery equipment unreliability therefore equipment was partially redesigned and rebuilt between North Anna outages
- NRC representatives reviewed all NDE data on site
- Dose expended: 18 man-rem

- 100% qualified visual performed
 - Less debris noted than North Anna 1
 - 27 of 65 penetrations initially rejected
 - 13 of 27 accepted when "debris" was easily removed by
 40 psi compressed air (technique introduced by vendor,
 used elsewhere and verbally endorsed by NRR)
 - 4 of 27 accepted when "debris" removed by 60 psi air plus satisfactory UT
 - Leaving 10 penetrations from visual campaign as rejected visual

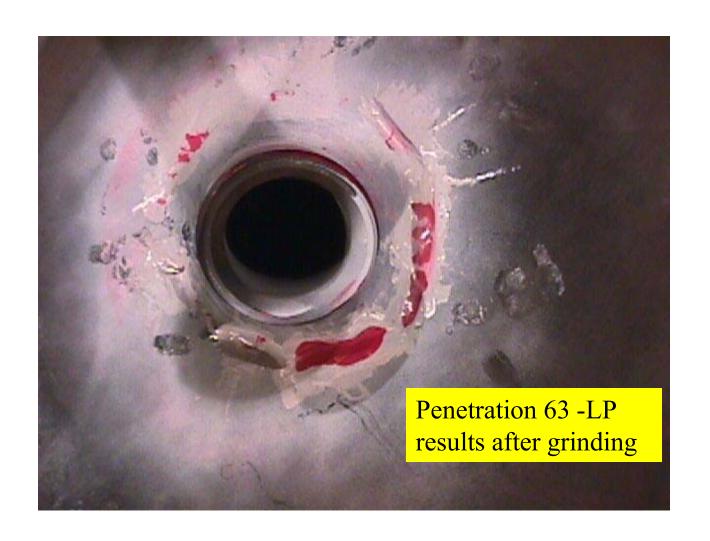
NDE campaign

- Axial UT probe used on 16 penetrations (including 6 cleared by air). No reportable indications
- Circumferential UT probe used on 5 penetrations with LP indications in J-groove weld. No reportable indications
- Vendor had no remote J-groove weld inspection capability
- Manual liquid penetrant (LP) on 10 penetrations
- 2 penetrations had circumferential LP indications in center of the weld, highly branched in appearance (penetration 27 had wet boron deposits on top)
- 4 penetrations had rejectable indications that could not be ground out
- 4 penetrations had indications that were ground out and accepted

Results

- 6 penetrations were reported to the NRC as a non-emergency 8-hour report in accordance with 10 CFR 50.72(b)(3)(ii)(A) and 50.73(a)(2)(ii)(A), a condition that results in a principal safety barrier being seriously degraded
- All indications confined to weld, hasn't propagated to tube
- All 6 penetrations repaired
- Dose expended: 161 man-rem
- Templating performed for future head replacement

- Performed 100% qualified visual inspection
 - Head extremely "clean"
 - 6 penetrations initially rejected
 - 3 of 6 cleared debris with air
 - 3 penetrations could not be cleared with air


• NDE campaign

- Thermal sleeves removed on penetration 62, 63 to facilitate inspection (penetration 51 is T/C)
- Performed EC in tube indications on all tube IDs
- Performed axial and circumferential UT axial indications shallow and accepted by flaw evaluation
- Bypassed EC in J-groove weld and went straight to LP examination. Indications in clad believed to be from original fabrication similar to Unit 1
- Manual grinding and then remote grinding on penetration could not clear indication
- Temperbead and embedded flaw relief requests approved as repair methodology for all 3 penetrations

- NDE campaign (continued)
 - Boat sample removed from one penetration
 - Failure analysis revealed solidification or "hot" cracking confined to the Alloy 182, or butter, material.
 - A few of the hot cracks were connected to the wetted surface.
 - Some PWSCC noted which may have connected the hot cracking to the surface or may have occurred after the hot cracking connected to the surface
 - Ringhals Unit 2 found fabrication flaws between J-groove weld preparation and vessel in 1992. Identified after grind out of penetration 63
 - Dose expended: 69.947 man-rem

- 100% qualified visual complete
- 3 penetrations masked and cleared with air
- No NDE inspection needed

Summary

- Reactor heads were cleaned and as-left condition documented
- Currently evaluating lessons learned
- Develop future strategies (inspection, repair, replacement)
- Push for better inspection technique in weld for flaw characterization
- Stay close to industry and regulator